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ABSTRACT

This paper proposes an active learning method to control a labeling
process for efficient annotation of acoustic training material, which
is used for training sound event classifiers. The proposed method
performs K-medoids clustering over an initially unlabeled dataset,
and medoids as local representatives, are presented to an annotator
for manual annotation. The annotated label on a medoid propagates
to other samples in its cluster for label prediction. After annotat-
ing the medoids, the annotation continues to the unexamined sounds
with mismatched prediction results from two classifiers, a nearest-
neighbor classifier and a model-based classifier, both trained with
annotated data. The annotation on the segments with mismatched
predictions are ordered by the distance to the nearest annotated sam-
ple, farthest first. The evaluation is made on a public environmental
sound dataset. The labels obtained through a labeling process con-
trolled by the proposed method are used to train a classifier, using
supervised learning. Only 20% of the data needs to be manually an-
notated with the proposed method, to achieve the accuracy with all
the data annotated. In addition, the proposed method clearly out-
performs other active learning algorithms proposed for sound event
classification through all the experiments, simulating varying frac-
tion of data that is manually labeled.
Index Terms: active learning, K-medoids clustering, committee-
based sample selection, sound event classification

1. INTRODUCTION

Sound event classification [1, 2] has many applications such as en-
vironmental noise monitoring [3], road surveillance [4] and remote
health care [5]. Nowadays, the majority of sound event classifica-
tion systems [6, 7] are based on supervised learning, which depends
on annotated recordings as training material. Preparing the training
material is commonly the most time-consuming part in developing
a sound event classifier and annotating audio typically costs much
more time than recording it. Similar situation has been faced in
other applications such as speech recognition [8] and recommenda-
tion systems [9], where unlabeled data is abundant but manual labels
are expensive to obtain.

The maximum number of labels can be manually assigned is
commonly called a labeling budget. In order to optimize the clas-
sification accuracy with a limited labeling budget, three techniques
have been established, including transfer learning [10], active learn-
ing [11, 12] and semi-supervised learning [13]. Transfer learning uti-
lizes an audio representation learned from other tasks, where more
labeled data is available. Active learning controls which samples
will be annotated in order to efficiently utilize the labeling budget.

Funded by European Unions H2020 Framework Programme through
ERC Grant Agreement 637422 EVERYSOUND and 737472 SMART-
SOUND.

Semi-supervised learning predicts labels for unlabeled data and use
them as training material. The three techniques are not mutual exclu-
sive, and can be combined. There are two previous active learning
studies on sound event classification, semi-supervised active learn-
ing (SSAL) [11] and medoid-based active learning (MAL)[12]. Both
of them involves a sample selection mechanism to control the label-
ing process, and a label prediction mechanism for unlabeled data.

SSAL performs sample selection and label prediction based on
a classifier trained with previously labeled data. Samples with low
classification confidence are selected for annotation, whereas sam-
ples with high confidence, are assigned with the predicted labels.
The classifier relies on a decent amount of annotated data to achieve
reliable label prediction and confidence estimation. Thus it can
hardly optimize a labeling process at the very early stage when little
annotated data is available. A solution to this drawback is to utilize
the similarities between data points, which rely on no annotation.

MAL completely relies on the similarities between unlabeled
data points. It structures unlabeled data into small clusters using
K-medoids clustering. Each medoid, as a local representative, is
selected for annotation. The label of an annotated medoid is propa-
gated to the whole cluster. After all the medoids are annotated, MAL
repeats the whole process on the data that has not been annotated,
clustering the data again and presenting the medoids for annotation.
However, repeating the process does not utilize previously annotated
data, which is important for optimizing the labeling process, after a
decent amount of annotated labels are collected.

In this study, we propose an active learning method that targets
on optimizing the whole labeling process, utilizing both the similar-
ities between data points and data annotated previously in the label-
ing process. The proposed method performs clustering and presents
medoids to an annotator similarly to MAL. After annotating all the
medoids, the annotation continues to the samples with mismatched
prediction results from two classifiers: a nearest-neighbor classifier
and a model-based classifier, both trained with annotated data. A
segment with mismatched predictions is ranked by the distance to its
nearest annotated sample, farthest first. In each iteration, a batch of
top ranked samples are selected for annotation, and the rest of the
samples update their predicted labels to the labels of their nearest
annotated samples.

The structure of the paper is as follows. The problem of opti-
mizing a labeling process is described in Section 2. The proposed
active leaning algorithm is introduced in Section 3. The evaluation
of the proposed system is presented in Section 4. The conclusion is
drawn in Section 5.

2. PROBLEM STATEMENT

We state the problem of optimizing the process of labeling acoustic
training material. A set of N sound segments S = {s1, s2, ...sN}
is given, initially unlabeled. A set of M sound event classes C =
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Fig. 1. Illustration of the labeling process, controlled by the pro-
posed method. Each segment is represented with a geometric draw-
ing and the shape represents the class.

{c1, c2, ...cM} is pre-defined. A label l = (s, c) ∈ S ×C associates
a segment s with a class c.

In a labeling process, an annotator examines sound segments and
assigns labels. A label l = (s, c) is added to a label set L ⊂ S × C,
by associating a segment s to a class c. The segments that are manu-
ally examined and annotated are called annotated segments, denoted
as A. The segments that are not examined are called, unexamined
segments, and denoted as U = S \ A.

A labeling process produces a label set L, including annotated
labels (LA) on A and possibly machine-generated predicted labels
(LU ) on U . The produced label set is used to train a supervised
classifier. The problem is to optimize the labeling process that the
obtained label set results in the most accurate classifier, under a la-
beling budget.

3. THE PROPOSED METHOD

The proposed method is illustrated in Figure 1. The input is a set
of segments S, initially unlabeled. Sound segments are typically
sliced from audio recordings.A set of labels L is produced through
a labeling process, controlled by the proposed method. The labeling
process ends when all the segments are annotated or the labeling
budget runs out. After the labeling process,L are used for supervised
learning.

The proposed method has two stages. In the first stage, K-

medoids clustering is performed and the medoids, as local repre-
sentatives, are presented to an annotator for manual annotation. An
annotated label propagates to the whole cluster as predicted labels.
By the end of the first stage, each segment gets a label, either an-
notated or predicted. In the second stage, a batch of B samples are
selected for annotation in each iteration. The selection is based on
the prediction mismatch between two classifiers: nearest-neighbor
prediction based on A and a model-based classifier trained with A.
The segments are further ranked by the distance to the nearest anno-
tated segment. In the second stage, the clusters are updated, using
A as cluster centroids and assigning each unexamined segment to its
nearest annotated segment.

3.1. Distance matrix

The proposed method relies on a distance metric relevant to the target
classification problem. The distances between segments under the
same class should be generally smaller, compared to segments under
different classes. We compute a distance matrix consisting of pair-
wise distances between all the sample.

Mel-frequency cepstral coefficients (MFCCs), its first-order and
second-order derivatives are used as acoustic features. The MFCCs
within a sound segment is represented by a multi-variate Gaus-
sian distribution, based on the mean and the variance. Symmetric
Kullback–Leibler (KL) divergence is used to measure the dissimi-
larity between a segment pair. The measured dissimilarity between
two segments x and y is called distance for simplicity, and denoted
as d(x, y), though KL divergence is not distance. The distance
from a segment to itself is zero and the distance matrix DN×N is
symmetric with diagonal values being zero.

The MFCCs-Gaussian-KL as a similarity measurement has
been widely used in acoustic information retrieval [15, 16]. Besides
MFCC-Gaussian-KL as a static programmed similarity measure-
ment, there are studies on machine-learned metrics, which outper-
formed static programmed similarity metrics in problems such as
content-based music recommendation [17] and sound event query
by voice-imitated examples [18]. However, this does not suit the
targeted situation, since a learned metric itself requires labeled data
to train.

3.2. Stage one: Clusters with representatives

K-medoids clustering is performed based on the distance ma-
trix. The clustering algorithm finds a set of K medoids M =
{m1,m2, ..mk}, that minimizes the total distance from each seg-
ment to its nearest medoid, as

∑
x∈S min{d(x, y)|y ∈M}. This

can be interpreted thatM is an optimized set of segments to make
nearest-neighbor prediction to the rest. Thus, medoids are presented
to the annotator for labeling. The annotated label assigned to a
medoid propagates to the whole cluster as predicted labels. The
label propagation is equivalent to nearest neighbor prediction based
onM.

3.2.1. K-medoids clustering

K-medoids [19, 20] is a partitioning-based clustering algorithm, sim-
ilar to more widely-used K-means. The main difference is that K-
medoids uses real data point as centroids, whereas in K-means, a
cluster centers at an arbitrary data point.

The initialization of medoids is based on farthest-first traversal
[21]: a traversed set starts as a singleton of a random segment and
the farthest segment to the current traversed set (the distance from a
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point x to a set S is defined as d(x,S) = min{d(x, y)|y ∈ S}) is
iteratively added to the traversed set. Farthest-first traversal has been
proved to give an efficient approximation of k-center problem [22].

3.2.2. Choosing the number of clusters

We analyse the number of clusters K inversely, using a factor KI =
N
K

, where KI can be interpreted as the average cluster size. KI
controls the trade-off between quantity and accuracy of generated
predicted labels. In the previous MAL study [12], KI has been fixed
to four, based on a preliminary experiment on a small scale dataset.
However, the best choice of KI varies along with each dataset.

We propose a median neighborhood test method to determine
KI , estimating the largest cluster size that an annotated label can
reliably propagate to. The test needs to manually annotate a small
number of segments. Firstly, we choose a pivotal segment p, the
segment that has the median distance to its nearest neighbor among
S, targeting on a segment with average neighborhood density. A
counter i is initially set to one. The algorithm queries the label for
the ith nearest neighbor of p. The counter increments if the label of
the ith nearest neighbor matches with p. Otherwise, we settle with
KI = i and runs K-medoids clustering with it. In case KI ends up
to be one, the method will be equivalent to random sampling. This
happens when the distance metric is highly irrelevant to the target
classification problem.

3.3. Stage two: Mismatch-first farthest-search

The sample selection in the second stage is iterative. In each itera-
tion, a batch of B samples are selected for annotation, denoted as B.
The selection is based on mismatch-first farthest-search, targeting on
segments with wrong predicted labels.

Our first sample selection criteria is based on committee-based
sample selection [14]. The principle is to select samples with mis-
matched prediction results from different types of classifiers, trained
with the same material, as a decision committee. It is based on two
assumptions. The first one is that a classifier is more likely to be
wrong when another type of classifier makes a mismatched predic-
tion, compared to the case that the whole committee agrees on the
prediction. The other assumption is that a classifier benefits more
from a counter example, where the classifier makes mistakes, than
an example where the classifier succeeds. Every selected sample is a
counter example to at least one classifier in the committee, thus the
committee as a whole efficiently improves with the selected samples.

The proposed method intrinsically involves two types of clas-
sifiers: the nearest-neighbor classifier for label prediction and the
model-based classifier trained after the labeling budget runs out. The
model-based classifier is trained with LA and the prediction results
on U are compared with the LU . The prediction mismatch between
the two classifiers is the first criteria in the sample selection.

There are typically multiple unexamined segments with mis-
matched predictions. The second criteria is the distance of label
propagation, assuming that the label propagating the largest distance
is most likely to be wrong. Thus, the segments with mismatched
predictions are further ranked by the distance to its nearest anno-
tated segment. Practically, the segments with mismatched predic-
tion are added to B based on farthest-first traversal, as is defined
in Section 3.2.1, adding the sample that has the farthest distance to
A∩B to B until B reaches the size of B. In case that less than B seg-
ments have mismatched predictions, farthest-first traversal continues
to segments of matched predictions.

After annotating a batch of segments, the predicted label of each
unexamined segment is updated based on its nearest annotated seg-
ment. This is equivalent to replacingM by A as medoids and up-
dating the partition in K-medoids clustering. SinceM ⊆ A in the
second stage, the sizes of updated clusters are equal or smaller com-
pared to the first stage.

4. EVALUATION

In order to evaluate an active learning algorithm, we use the obtained
labels to train a supervised classifier, with which the classification
accuracy on a test dataset is used for evaluation. The labels obtained
with different active learning algorithms vary in terms of quantity
and accuracy, thus the resulted classifier is used for evaluation.

4.1. Dataset

Previous study on MAL used UrbanSound8K [24] for evaluation.
We use the same dataset in this study for consistency. Urban-
Sound8K is a public environmental sound dataset, based on real
field-recordings. The dataset includes 8 732 manually annotated
sound segments with maximum duration of 4 seconds, totalling 8.75
hours. The dataset includes 10 sound event classes: air conditioner,
car horn, children playing, dog bark, drilling, engine idling, gun
shot, jackhammer, siren and street music. The dataset provides a
10-folds division for cross validation.

4.2. Experimental setup

The experimental setup also follows the previous MAL study. An
active learning algorithm output training material that requires a su-
pervised classifiers to evaluate. Since the purpose of the evaluation
is not to find the best model, we simply use a support vector ma-
chine (SVM) classifier, the baseline classifier of the UrbanSound8K
dataset with radial basis function as kernel.

The acoustic feature extraction in the supervised learning also
follows the baseline in UrbanSound8K, using the following sum-
mary statistics of MFCCs in each segment: minimum, maximum,
median, mean, variance, skewness, kurtosis and the median and vari-
ance of the first and second derivatives. MFCCs used in the similar-
ity measurement and supervised learning are the same. The audio
signal is divided into frames with 24 ms length and 50% frame over-
lap. We compute 1st to 25th MFCCs from 40 Mel bands between 25
Hz and 22 050 Hz.

In each round of evaluation, nine folds are used for training and
one fold is used for testing. The labels provided by the dataset are
used as ground truth. In a training set, the ground truth labels are ini-
tially all hidden. Annotating a sound segment consumes the labeling
budget by one. The annotated labels are always simulated with the
ground truth.

Unweighted accuracy is used to evaluate the performance. It
weighs different classes the same, regardless to the number of in-
stances. The classification accuracy is reported averaging the accu-
racy across all 10 folds. Due to the random elements, medoid initial-
ization and random sampling, in the experiments, all the experiments
are repeated three times and the averaged results are reported.

4.3. Reference methods

Random sampling is commonly used as a baseline in active learning
studies [11, 12]. It presents the data to the annotator in a random
permutation.
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Fig. 2. Classification accuracy as a function of labeling budget. The
proposed method, MAL-MF, is evaluated with SSAL [11], MAL-R
[12] and random sampling as reference methods.

SSAL [11] is used as the second reference method. In the first
stage, 200 samples are randomly selected. In the second stage, the
sample selection is iterative. In each iteration, the annotated labels
are used to train a classifier. In each iteration, the least confident 50
samples to the classifier are selected for annotation. When the label-
ing process ends, unexamined segments get predicted labels from the
classifier, and all the obtained labels are used to train a final classifier.
Originally in the SSAL study, it has a maximum confidence thresh-
old for sample selection and samples are randomly selected under
the threshold. In addition, it has a minimum confidence threshold
for label prediction. Our reference method does not use these two
thresholds, since there is not an established rule to set them.

Previous MAL [12], named here MAL-recursive (MAL-R), has
the similar procedure as the first stage of the proposed method, with
fixed KI = 4. It runs a recursive process, repeating the first stage
process on unexamined segments, after all the medoids are anno-
tated. We firstly evaluate MAL-R with KI = 4, as it has been
originally proposed. Additionally, we evaluate MAL-R with the KI
estimated using the proposed median neighborhood test.

The proposed method, medoid-based active learning with
mismatch-first farthest-search (MAL-MF) uses median neighbor-
hood test to determine KI . The batch size in the second stage is set
to 50, the same as the experimental setup on SSAL.

4.4. Results

Figure 2 illustrates the performance of the proposed method (MAL-
MF), compared to MAL-R, SSAL and random sampling. All seg-
ments in the training set get annotated labels when the labeling bud-
get is 8 000. When all the segments are labeled as ground truth,
the obtained classifier achieves an accuracy about 64.7%, which is
the ceiling performance of all compared methods. Experimentally in
some cases, a few errors in predicted labels result in a classifier with
higher accuracy. As a result, some results in the illustration may be
slightly higher than the ceiling performance. We call a result to ap-
proximate the ceiling performance when the difference in accuracy
is lower than 0.5%.

The result shows that the proposed method outperforms all the
reference methods through the experiments. The proposed method

requires only 20% of the training data to be manually annotated to
approximate the ceiling performance. In comparison, SSAL outper-
forms baseline only when the labeling budget is more than 25% of
the training data. The main reason is that the labels predicted with
SVM are much less accurate than the labels propagated from the
local representatives, when the labeling budget is low.

The proposed method and MAL-R shares the same process in
the first stage. The proposed method uses KI estimated separately
for each fold. Based on the proposed median neighborhood test, the
choice of KI ranges in [4, 16] across the ten folds, with the median
of 12. When MAL-R uses fixed KI = 4 as previously proposed,
the cluster size is relatively small,thus the purity of the clusters is
more than 97%. It approximates the ceiling performance by anno-
tating all the medoids, using 25% of unlabeled data as labeling bud-
get. The proposed method, considering the median case KI = 12,
produces labels three times fast as KI = 4, with the purity of clus-
ters dropping to 85%. The higher number of obtained labels allows
better performance on small labeling budget. The second stage pro-
cess allows the proposed method to effectively correct the errors in
predicted labels. As a result, the proposed method approximates
the ceiling performance using only 20% of unlabeled data as label-
ing budget. When MAL-R uses the same KI estimated with the
proposed median neighborhood test, it has the same performance to
MAL-MF with low labeling budget, however the accuracy of MAL-
R increases slowly as labeling budget grows, due to its non-optimal
second stage.

In order to analyse the sample selection performance in the sec-
ond stage, we observed the label prediction error rate in unexamined
segments, unexamined segments with mismatched predictions and
selected segments. From the beginning of the second stage to where
the performance approximates the ceiling, the prediction error rate
of segments with mismatched predictions is typically 1.5 times to
the error rate in all unexamined segments. The selected segments,
the segments with mismatched prediction and ranking top 50 by the
distance to the nearest annotated segment, has 3-10 times label pre-
diction error rate, compared to error rate in all unexamined segments.
Typically the ratio grows from three to ten along with the labeling
process.

5. CONCLUSIONS

This study proposes an active learning algorithm to control the la-
beling process on sound event data, to save the annotation effort to
prepare training material. The proposed method has two stages. In
the first stage, K-medoids clustering is performed on an unlabeled
dataset and the medoids are selected for annotation. The annotated
label on a medoid propagates to its cluster. In the second stage, the
selection is based on mismatch-first farthest-search, an extension and
committee-based sample selection. The predicted labels are updated
using nearest-neighbor prediction, based on the annotated data.

The evaluation is based on the classification accuracy on a test
dataset, using a support vector machine classifier, trained based on
labels obtained in the active learning process. The results show that
only 20% of the data needs to be manually annotated with the pro-
posed method, to achieve the performance with all the data anno-
tated. Furthermore, it clearly outperforms all the reference method,
SSAL and MAL-R, through all the experiments.

In the future, the proposed method can be tried to save labeling
budget to classify other media type, if there is a exists a similarity
metric that gives decent retrieval performance.
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